A Genetic Interaction Network Model of a Complex Neurological Disease
نویسندگان
چکیده
Absence epilepsy (AE) is a complex, heritable disease characterized by a brief disruption of normal behavior and accompanying spike-wave discharges (SWD) on the electroencephalogram. Only a handful of genes has been definitively associated with AE in humans and rodent models. Most studies suggest that genetic interactions play a large role in the etiology and severity of AE, but mapping and understanding their architecture remains a challenge, requiring new computational approaches. Here we use combined analysis of pleiotropy and epistasis (CAPE) to detect and interpret genetic interactions in a meta-population derived from three C3H × B6J strain crosses, each of which is fixed for a different SWD-causing mutation. Although each mutation causes SWD through a different molecular mechanism, the phenotypes caused by each mutation are exacerbated on the C3H genetic background compared with B6J, suggesting common modifiers. By combining information across two phenotypic measures - SWD duration and frequency - CAPE showed a large, directed genetic network consisting of suppressive and enhancing interactions between loci on 10 chromosomes. These results illustrate the power of CAPE in identifying novel modifier loci and interactions in a complex neurological disease, toward a more comprehensive view of its underlying genetic architecture.
منابع مشابه
چشم اندازی به نقش عوامل ژنتیکی و محیطی در بروز آسم
Background and purpose: Asthma is a chronic inflammatory disease of the airways that is caused by hypersensitivity to environmental allergens. Symptoms of asthma include shortness of breath, airway hyper-responsiveness, wheezing, and cough. The disease might vary from a mild to severe and intermittent to chronic disease. Asthma is known as a multifactorial disease due to the interaction of gene...
متن کاملIdentification of Genetic Polymorphism Interactions in Sporadic Alzheimer’s Disease Using Logic Regression
Objectives: Genetic polymorphism interactions are among the important factors in affliction with complex diseases like Alzheimer’s disease. The important goal of genetic association studies is to identify a combination of polymorphisms and measure their importance in increasing the risk of occurrence of such diseases. In this study, feature selection approach of logic regression was used to ide...
متن کاملAn Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model
In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...
متن کاملCombining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement
The ionospheric plasma bubbles cause unpredictable changes in the ionospheric electron density. These variations in the ionospheric layer can cause a phenomenon known as the ionospheric scintillation. Ionospheric scintillation could affect the phase and amplitude of the radio signals traveling through this medium. This phenomenon occurs frequently around the magnetic equator and in low latitu...
متن کاملComparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital
Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...
متن کامل